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CHAPTER ONE 

(A)  Introduction 

(Al)  Detection with. Known Covariance 

Let us consider the problem of detecting a signal in gaussian noise 

where both signal and noise are assumed to be real valued, the two 

hypotheses are 

E^:      X = n      (noise only) (1.00) 

E^:     X = n + s  (signal present) (1.01) 

where x   is the vector of the observed data; n is a zero-mean gaussian 

T random vector with covariance matrix E(nn ) = N ; and  s  is the signal 

to be detected. The dimensions of x, n, and s are pzl. 

Under these conditions it can be shown that a likelihood ratio 

test statistic [4]  is 

■ z = x'^ N~^s (1.02) 

Equivalently, the test statistic z can be considered as the inner 

product of X and weight vector w. 

z = x^w (1.03) 

where w = N~^s. (1.04) 

Brooks and Reed [4] have shown that selecting a weight vector 

according to formula (1.04) is the same as maximizing the signal-to- 

noise ratio (SNR).  We can express this as maximizing the quadratic 

ratio 

T T 
- SNR = ^^^^ "^ (1.05) 

w Nw 

> 

The weight vector that maximizes  this ratio (see [1,2,4]) is 

w = N~^s (1.06) 

The maximum SNR is 



TR 7331 

S^ax = *^N ^s (1.07) 

(A2)  Standard Adaptive Detection with Unknown Covariance 

In practice we do not know the noise covariance matrix   and so it is 

nsnally estimated  from the data.  The maximum-likelihood estimate of 

the noise covariance matrix [7] is 

K 

^= -T-  }W ^'-"'^ 

where the observed noise vectors, n- ,are pxl vectors which are 

mutually independent and gaussian distributed with zero mean and 

covariance matrix N. Following standard methods one can obtain an 

estimate of the weight vector by inverting the sample covariance matrix 

[1,2,3] as follows: 

w = N'-'-s (1.09) 

To measure the effectiveness of this estimate of w [1], we can use a 

normalized SNR which is formed by (a) replacing w by w in formula 

(1.05) and (b) dividing by the maximum SNR value of formula (1.07) . 

The resulting normalized SNR is given by the formula 

-T T„ 

SNR =  *^" "" T -1  . ^^'^^^ 
(w Nw)(s N s) 

This ratio is always between zero and one 

0 < SNR < 1 

It is a random variable because the estimated weight vector w is a 

function of the observed data. Reed, Mallet,Brennan [1] have derived 

the distribution of the SNR for the above weight vector estimate based 

on the inversion of the sample covariance matrix.    The distribution 
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is Beta with expected value 

E(SNR) = ^ K + 1 ^ ^^'^^^ 
where K is the number of vectors used to estimate the covariance matrix 

and p is the matrix order . 

From the expected value of SNR formula (1.11), it is roughly seen 

that if the sample size K is small with respect to the matrix order, 

then the estimate of w is likely to be poor [3], since E(SNR) is small. 

(A3)  Improved Adaptive Detection for Unknown, but Approximately-Low- 

Rank. Covariance 

If N is approximately low rank, it can be shown theoretically 

through eigenvalue and eigenvector perturbation analysis ( Wilkinson 

[9] ) and experimentally [10] that the principal eigenvalues and 

eigenvectors of N are relatively stable, but the small, near zero 

eigenvalues and their corresponding eigenvectors fluctuate widely with 

perturbation. 

These results suggest that it should be possible to increase the 

probability of obtaining a high value of SNR by using estimates of w 

based on the principal eigenvectors of N . Let us look at w by 

decomposing it in terms of the eigenvectors of the underlying true 

covariance matrix, N . The eigen decomposition of N is N = V A V^ where 

V is the matrix of eigenvectors and A is the diagonal matrix of 

eigenvalues. The k'th eigenvector of N is denoted by v^^ . 

Then the desired weight vector of (1.04) can be written as 
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w = N ^s = -^ (s^v, )v, + -^ (s'^v,)v- + . . + -J- (s^v )v (1.12) 
JL.     11A.-     22 /.      PP 
1 2 p 

Tliis fomnxla shows the origins of the difficulty in using the estimated 

weight vector of (1.09). The right-hand-side eigenvectors and 

eigenvalues of (1.12) would then be replaced by the corresponding 

estimated values. The fluctuations in the small eigenvalues can then 

cause large errors, because their reciprocals are used in the 

computation of the weight vector. Next assume that ^2 = ^3 = . . ., = 

Xp and consider the case in which X.-, is much larger than the other 

eigenvalues.  Let us consider the limiting weight vector as Xj^ ->". 

lim w  =^ f(s^v-)v- + (s^v,)v, + . . . + (s^v )v 1   (1.13) 
X ^"      X^ I   2  2      3  3 p  pj 

Neglecting the scale factor I/X2 which does not affect SNR, we can 

express w as 

T 
lim w      = s - (s v-)v^ (1.14) 
X-->" 

This form of the weight vector can be intrepreted as a null-steerer, 

because it eliminates any component which is proportional to a specific 

vector, in this case v^ . Liu and Nolte [5] have shown that when the 

noise covariance matrix N is near rank 1 and the component of the 

signal lying in the direction of v^ is not strong, then the performance 

of the weight vector of (1.14) is about the same as the optimum weight 

vector of (1.04). For the case of unknown, but approximately low-rank 

covariance, motivated by the above considerations, we propose the use 

of the following weight vector: 
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w = s - (s'^v^)?! (1.15) 

where v^^ is the principal eigenvector of N. In previous work we 

proposed this weight vector for adaptive detection and evaluated its 

performance through simulation [15] , Here we study the performance 

analytically in order to explain the results of the simulation. 

Since this estimate is based on the principal eigenvector of N, 

and the principal eigenvectors are relatively unaffected by 

perturbation [10], it should be superior to the conventional 

estimator based on the inversion of the sample covariance matrix. 

Using the null steerer form of the weight vector formula (1.15) 

and an approximation for the principal eigenvector (of the estimated 

covariance matrix N) obtained through one iteration of the power 

method, we will derive an approximate expression for the distribution 

of SNR, formula (1.10) under the conditions of near rank-1 noise and 

large sample size. Below is a brief outline of the steps we will take; 

(1) Transform SNR formula (1.10) into new coordinates based on the 

eigenvectors of N, that is 

P  P 

}      }    ^ih 'i   '^k 
~     i=l v=i 
SNR =  •" ^ ^ "•  (1.16) 

X    d 
n  n 

m=l       n=l 
}     ^   } 

with Cj^ = vjj,  s (1.17) 

•^k " ''k^* = vj.'^ ( s " (s'^v^)vj^ ) (1.18) 

and where \^    and v-^    are  the eigenvalues and eigenvectors  of N, 
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respectively. 

(2) Obtain an approximation for the principal eigenvector of N, v< , 

by taking one iteration of the power method [11] using \^ as the 

starting vector. 

V;^ = v^ = Nvi ' (1.19) 

where v< denotes our approximation to v-i. 

(3) Expand \-^  using the eigenvectors of N as a basis. 

X = V^v;^ (1.20) 

and 

vi = Vx (1.21) 

AsjTnptotically, the expansion scale factors in vector x are gaussian as 

the covariance sample size tends toward  infinity. 

(4) Using the expansion (1.21) of v^ in place of v-j^ in formula (1.18), 

substituting (1.18) in (1.16) and approximating the distribution of x 

by a gaussian distribution, then as the noise tends toward rank 1, SNR 

formula (1.16) reduces to a ratio of quadratics that are a function of 

one random variable. 

a + a p + a p 
SNR = ^—^ (1.23) 

a^ + a^ P + ag P 

where the o^, k=l,2..6 are constants and P is a ratio of two 

asymptoticaly gaussian and uncorrelated random variables. 

(5) Finally using formula (1.23), the distribution of P ( the 

distribution of ratios of gaussians [6] is available in closed form ) , 
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and standard univariate random variable transformation theorems, the 

approximate distribution of SNR can be readily obtained. The paper will 

be presented in three main parts; (1) Reduction of SNR assuming near 

rank-1 noise and large sample size. (2) Finding the approximate 

probability density of SNR using the reduced form, and finally, (3) 

experimental results . 
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CHAPTER TWO 

I)   Rednction of SNR asstuning near rank 1 noise and large sample size. 

Coordinate Transformation of SNR 

We start the derivation by re-expressing the signal and weight 

vectors in terms of the eigenvectors of the N, recalling that the 

eigenvectors of N form a basis. This coordinate transformation makes 

the problem more tractable analytically. Performing the coordinate 

transformation we obtain 

P 

s 

k=l 

=^ c^v^ (2.00) 

P 

w = }  dj. vj^ (2.01) 

k=l 

where the Vj^'s are the eigenvectors of N. Now substitute formulas 

(2.00) and (2.01) and the eigen-decomposition of N into SNR, formula 

(1.10). 

P   P 

}      I    'i   S ^j '^k 
SNR =  ^~"^ ^~'^  (2.02) 

P    ^2  p 

}     ^   }   K^\ 
t     in    1 BP'i       n=l 

where X- are the eigenvalues of N. ^The d- 's are random variables that 

are a function of w. So far no approximations have been used. We simply 

have a different expression for SNR. 

The quadratic forms in formula (2.02) that involve the random 

8 
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scale factors d< can be thought of as linear combinations of the 

products d-djj. With this in mind, we will proceed by first determining 

the approximate form or distribution of the products d-dv under the 

asymptotic conditions as ^2-^ 0 and K—> => (near rank-1 covariance and 

large sample size) . If we refer back to formula (1.18), it can be seen 

that the sole contribution to the random component of random variable 

d- is from v-i* the principal eigenvector of the estimated sample 

covariance matrix. Therefore, the next step is to determine the 

approximate distribution ( as X.-> 0 and K -><=) of v^. From this point 

onward we assume that the noise is gaussian and strongly rank one, 

that is, the noise covariance matrix is approximatly rank 1. To 

simplify the analysis, the principal eigenvalue of N, X^ is fixed at 1 

without loss in generality. Also, assume that the remaining 

eigenvalues are much smaller than 1 and equal. 

Xj^ = 1 > > X2 = X3 = . . . = ^p (2.03) 

The form of the weight vector that we will be using is the null 

steerer (1.15) . 

w = s - (s"vj^)vj (2.04) 

Approximating the Principal Eigenvector of N 

To estimate v^ , the principal eigenvector of N , we use a three- 

step procedure. First take one iteration of the power method [11] using 

v^ (recalling that v^ is the principal eigenvector of N) as the 

starting vector. We then represent the resulting vector, Nvi , in 

terms of the principal eigenvectors of the true covariance matrix N as 

follows 
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V    - V (2.05) N v^  =  V X 

in which the columns of V are the corresponding eigenvectors of N. 

Finally, we form our estimate of v^^ , which we denote by vi, by 

normalizing the above vector to unit length 

vi =  [ 1 / (x^x)^/' ] V X ' (2.06) 

where x is a pxl vector with elements {x^} containing the expansion 

scale factors. 

We have shown in a previous paper [10] that if the true 

covariance matrix of the noise, N , is approximatly rank 1 , then even 

for small sample sizes of 16 or 32 observations, v^ lies in nearly the 

same direction as v-^ ( see Fig, 1). The rate of convergence of the 

power method [11] is proportional to the magnitude of the ratio of the 

principal eigenvalue to the second eigenvalue and since the starting 

vector is the principal eigenvector, v^ , of the underlying population 

covariance, it follows that in the near rank 1 case convergence should 

be rapid , implying that v^ should be an accurate estimate of Vi . 

In appendix A we show that the scale factors  (elements of x) are 

asymptotically multivariate gaussian and independent as follows: 

x;^ ~ N( 1 , 2/K ) (2.07) 

xj^ ~ N( 0 , X.2/K )   for k=2,3...p (2.08) 

Determining the Weight Vector Expansion Coefficents d-^ 

Let us now find the expansion coefficients dj^ of formula (2.01) , 

To  obtain  the  dj-  coefficents,  pre-multiply  (1.15)   by  the  k'th 

10 
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dk = v/w = v^^s   -   ( s^v, ) ( V Jv, ) 

eigenvector of N. 

(2.09) 

Note that Cv^v^'s .  Then substitute v^ (2.06)  in place of Vi in the 

weight vector expression (2.09)  and expand 

\     = «k 

^  J  J 

j = l 

1/2 1/2 

(2.10) 

d, = c^ 

where 

''l ^1 *k 

x^+  e 

^k y 

M"    ' 
(2.11) 

y = )  ex. 
^   J  J 

j=2 

(2.12) 

(2.13) 

Before we form the products d-d^ , it is noted that the normalization 

terms in dj^ (2.11) are simplified   to a function of x-, as  X^ -> 0 

11 
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since the variance of the x-'s (for j=2,3...p) are proportional to X.2. 

This  corresponds to the near rank 1 case . 

;,li?0   -TZ    =    -^ ^^'^'^ 
2 x^   +    s X 

The right-hand side of (2.14) is a good approximation of the 

normalization term for sufficently small Xn • Replace the normalization 

terms in formula (2.11) by the approximation (2.14) . 

dj^= c^ !li^ !i^ (2.15) 

^1 ^1 

Reduction of the Prodacts d-d.  Under Near Rank-1 and Large Sample 

Condition 

Using the formula (2.15) and assuming that the error due to the 

simplification of the normalization term (2.14) is neglible, we next 

compute d-d^. 

12 
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d. a,  ~ c.c, —  " —*  
j  k     j k      x^ x^ ^2 

(2.16) 

Vjy \ 

2 
1 J   k -   + 

2c^x.x^y 
+ • 

2 

2 
*1 

2 
^1 

3 
^1 

4 
^1 

We now determine the behavior of the products d.d. (2.16) in the near 

rank-1 (X2~^ 0) and large sample case (K->=>). This can be done through 

calculation of the expected values and variances of the individual 

random terms in (2.16). From these calculations (see Appendix B) it can 

be seen that the variance and expected value of the i'th random term ( 

for j.kf^l.l ) in (2.16) is roughly proportional to the ratio (X2/K)^^ 

where z^   is some integer number. This implies that as ^2~^ ^   ^°^^  K-^ =>, 

the term(s) ( in formula (2.16) ) having a variance proportional to the 

least power of ^2^^  will contribute the dominating variance to d-di^ 

(2.16).  It follows that under these conditions, the random component 

of d-dj^ should be accurately approximated by the dominating random term 

in (2.16) in respect to variance. 

The approximate expressions for the products d-d. are obtained 
J X 

using the above methodology (with the exception of d^ , which can be 

simplified algebraicly).  We have 

For j=l . k=l 

2 

4 = ^1 =  T— (2.17) 
^1 

for j=l. kjtl 

13 
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^1 h  == ^t 
\ y 

(2.18) 

Finally , for j=2,3...p 

,    k=2,3.,.p 

J  k     jk    j  k ^1 iv^LlXIiJ (2.19) 

where the approximating form of d-d^ is denoted as D.^. It is assumed 

that c^fO in the above formulas. For sufficently small X2 and 

reasonable values of K, the D^j^'s should be good approximations to the 

djdjj.'s . We note that formulas (2.17) , (2.18) and (2.19) are 

functions of random variables which are ratios of gaussian random 

variables. 

Simplification of SNR with D-. 

Substituting Djj. ( formulas (2.17) (2.18) (2.19) ) in place of 

d-dj^ in formula (2.02) and through algebraic manipulation of the 

numerator and denominator terms, we can transform SNR (2.02) to the 

desired form, formula (1.23) 

^  J  J 

where   ^ = 
1=2 

(2.20) 

Start by  simplifying the numerator of SNR. From (2.02) the  numerator 

( denoting the numerator as n) is 

14 
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P    P 

j=l  k=l 

Separate tlie numerator double summation in terms of d,'' 

k=2,3...p) and i:d^  (for j,k=2,3...p) . 

(2.21) 

<ilk    ^^"'^ 

n = c.   d.   + 2c,     ) c, d,d,   +   > > d  d  c  c 
11 lZ.klk       L /.nmnm 

k=2       n=2 m=2 

(2.22) 

Through (1) substitution of D.. ( formulas (2.17) (2.18) (2.19) ) in 

place of d-di^ in formula (2.22), (2) interchanging the order of 

summation in the last term of n (2.22) and factoring, and finally (3) 

the collection of equivalent terms , the numerator (2.22) can be 

written as 

(2.23) 

Z.  L      n m 
p.=2  m=2 

2  2 
+  c.  y 4 c. 

[>=2 

"1 "1 
The numerator is now in the desired form. We simplify the denominator 

in  a  similar manner.  From  (2.02)  the denominator  (denoting  the 

denominator as d) is 

d =  J 

u=i 
X.. 
j 

\i 
k=l 

(2.24) 

As stated previously , we assume that 
> 

and 

Xi = 1 

2 ~ 3 ~ 4 ~ • • •» ~ ^» 

15 
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Now separate the denominator summation in terms of di  and d-  ( for 

j=2,3...p) and the  X«  and 1/X.A scale factors. 

j=2 

P 

z 
k=2 

c, d. 
_1_ 
X, } 

k=2 

c d 
k 1 

(2.25) 

+ y-. 
\      2,2 
2 ''I'^j 

j=2 

Then as before, through (1) substitution of D-^ ( formulas (2.17) 

(2.18) (2.19) ) in place of djdj^ in (2.25). (2) interchanging the order 

of summation in the second and fourth terms of (2.25) and factoring, 

and finally (3) the collection of equivalent terms, the denominator can 

be written as 

d = 

' p '   P           P p 

^k/^2^    ^1 
>:=2 

2 
y      + 

-5 

I    1   'I'] 
j=2 k=2 

^ V? I 4 
. k=2 

2 c. } 
bt=2 

'h4 
(2.26) 

Using the simplified forms of the numerator (2.23) and denominator 

(2.26) and forming their ratio , the approximate SNR is 

16 
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SNR =: 
a + a^P + a^P 

a + A + a- P + a-P"* 
3     4 

(2.27) 

where  *i ~   ~ ^ "i 

'2  ■      'l 

1 
k=2 

(2.28) 

(2.29) 

P    P 

"1     }'] 
j=l  k=l 

2 2 
*^k 

(2.30) 

A = X,c^ 

|>=2 

^3 = -2 c, 

P 

} 
X=2 

2 
°k " V 

.1 

2 
1 

*4 = 

P 

. k=2 

/ S ^ 2 

• 

(2.31) 

(2.32) 

(2.33) 

The SNR is now a fanction of one random variable, P . We have obtained 

the form of SNR that we wanted. The density of SNR can now be readily 

be obtained using standard univariate transformation theorems for 

functions of random variables. 

Validity of Approximations 

Although earlier we stated that the reduced formulas for D., 

(2.17), (2.18).  and (2.19) only hold for c.^tQ for j=l,2...p and Cj^ #0 

17 
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for k=l,2...p , our above result (2.27) is valid even when some of the 

Ci's and c^'s are zero or very small. This is because the D.. 's 

associatted with the relatively large non-zero c-'s and Cj^'s contribute 

the dominating variance in formulas (2.23) and (2.26) . By comparison, 

the D.^'s associated with the zero or very small cj's and c^'s 

contribute generally little variance to (2.23) and (2.26) under the 

near rant-1 and large sample size condition. * 

The accuracy of the approximation for SNR (2.27) can be determined 

through the error calculations in Appendix B. 
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CHAPTER THKEE 

II)  Determining the approximate probability density of SNR using the 

reduced form. 

In section I it was shown that when the noise covariance matrix 

is almost rank 1 and the sample size is sufficently large , the SNR 

reduces to a function of a single random variable P that is 

approximatly a ratio of gaussians. Obtaining the density of SNR is now 

a simple two step procedure: 

1) Determine the density of p . 

2) Dsing standard univariate transformation theorems and the density 

of p, obtain the density of SNR. 

Determining the Density of P 

Recall from section I that p (2.20) is 

P = (3.00) 

In appendix A it was shown that the Xj^'s for reasonable sample size K 

tend toward gaussian, therefore the random variable P can be 

approximated as a ratio of independent gaussian random variables. From 

appendix A  the normal approximati'ons were shown to be: 

xj^ ^ N(l. 2/K) (3.01) 

xjj. ^ N(0. X2/K) for k=2,3,...p (3.02) 

We can therefore consider p as a ratio of two gaussian random variables 
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, X and u as follows: 

P = x/u 

where 

(3.04) (3.05) 

(3.03) 

X  =   )  C . X. 
^ J J 

j=2 

U  =  X, 

The means and variances of x and u are 

E[x] = i = 0,  E[u] =5=1 (3.06) 

o     = X,' 

ij=2 

2 
c . 
J 

/ K a    =  2/K (3.07) 

Kanter [6] has derived a general form of the probability density for 

the ratio of two gaassian random variables , using the same notation 

as before we have 

P(P) = \^\  e^P [-(<(s^+ 1)] / (s?p) + 1) 

•[zO) erf( z(p) ) exp( z?p) ) + -;^j 

where a = a  , b = a 
X       u 

r  =  correlation  coefficient       0   <   r   <   1 

Y  =  ab Vd-r   ) 

2 2 
0 = 5 /  2b 

> 

s(p)   =   (b^P -  rab)/Y 

~ 2 _ _ 
s  =   (b   (x/u)   -  rab)/Y 

z(p)   = Vj*     (   s  s(p)   + 1   )   /  V(   s^p)   +  1   ) 

(3.08) 

(3.09) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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Noting that the correlation coefficent is zero ( r=0 ) since x^ 

and X, for k=2,3...p are approximatly independent, we can now obtain 

the density of P directly through substitution. 

p(p) = [Vi /^^^^)] [exp -K/4] / [(2/X,r) p^ + 1] 

-JL I  2 

y[(2/X2r)V+i ] 
erf 

^  I  2 

y[(2/X2r^p?i] 
exp 

K /  4 

. (2/r)   P    +  1  J Vn 

(3.16) 

1 

where     T = r=? (3.17) 

j=2 
We have obtained the density for p.  At this point we can derive the 

approximate density of SNR. 

Finding the Approximate Density of SNR 

To calculate the approximate density of SNR, we need the use of 

the following random variable transformation theorem [8] 

Theorem A: Given a function g(p), where P is a random variable with 

density p(p) , the density of g(p) can be found using p(p) as 

follows: we solve the equation y=g(p) and denote its real roots by 

P]^, P2> • • •PQ' Clearly, the values of the roots depend on y. Then the 

density of y is given by the formula 

f( y )  = 
P( Pi ) 

g( Pi ) 

p( P^ ) 

g( P^ ) 
(3.18) 
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d g(p) 
where  g( P )  =   (3.19) 

dp 
and 

a + a P + a p^ 
g(p)= 2" (3.20) 

a + A + a-P + a.p 

Since g(p) is a ratio of quadratics, it follows that there are two real 

roots. Multiplying both sides of formula (3.20) by the denominator of 

g(p) and collecting terms we have 

ya + yA + ya^P + ya^P^ = a + a^p + a^P^ (3.21) 

(ya^ - a^)? + (ya^ - aj)p + (a[y-l] + yA) = 0 (3.22) 

Note that formula (3.22) is in the form of a standard quadratic, 

therefore the standard root formula for quadratic equations can now be 

applied to obtain the roots of g(p) • The two roots are 

(a^ - yag) + [ (ya^-a^)^ - 4(ya^ - a^) (a[y-l] + yA ) ] ^^^ 

^1,2 = 2(ya^ - a^) 

(3.23) 

Next  we  determine  the  derivative  of  g(p)  with  respect  to  p. 

Differentiating  we get 

dg(p) _ 
 = (a^ + 2a2P) (a + A + a^p + a^p ) (3.24) 
dp 

-(a + a^^P + a^P^) (a^ + 2a^p) (a + A + a^P + a^P^)"^ 
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We can now obtain the approximate density of SNR through direct 

substitution using theorem A formula (3,18), the density of P (3.16), 

the roots P^ j (3.23) and the derivative g'(p) (3.24). Denoting the 

density of SNR as f(y) , we get 

f(  y )  = 
p( ?! ) P( P2 ) 

g( Pi ) 
(3.25) 

S( ^2 ) 

We recall that p^ ^^^ P2 ^^^ functions of y. The dependence on y is 

given in formula (3.23). The density f(y) exists over the region where 

Pj^ and P2 are real . 

Asymptotic Moments of SNR when ^2^0 

The formulas we have derived for the probability density of SNR 

(3.25) are complicated and one would probably have to resort to 

numerical evaluation of the integrals to obtain the first and second 

moments of SNR. However, in the extreme case when X.2~®, it can be 

shown that asymptotically as K —>" 

SNR ^ 1 - 

(   1 2.2, 
( 1 - Cj^ ) 

(3.26) 

where z~N(0,l) and "d" implies convergence in distribution.  Using 

(3,26) we can readily obtain the es^pected value and variance of SNR. 
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E[ SNR 3  = 
( 1 - c^ ) 

E 
(3.27) 

Var[ SNR ]  = 
2  ( 1 - cj )'* 

(3.28) 

Proof: First, it was shown in Appendix A that the numerator and 

denominator of P (3.00) are asymptotically gaussian (see Appendix A for 

detail). Through application of a theorem for the asymptotic 

distribution of a function of asymptotically gaussian random vectors 

[Theorem B, pg. 124,14] , it is seen that p (3.00) itself is 

asymptotically gaussian as K ->■» as follows: 

f ^ }'] 
i=2 

1/2 
(3.29) 

where z~N(0,l/K) .  Next, without loss in generality set the signal 

power to unity, that is 

cT = 1 
J 

(3.30) 

The summation in (3.29) can now be rewritten as a function of Ci 
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p ^ [^2 ( 1 - c^ ) ] ^''^ z   (3.31) 

substitute (3.31) in place of P in formula (2.27) and let ^2-^6 (note 

that Cj^ is constrained to be Ci il in formula (3.31) ). 

^  .        1 
SNR ^   5 ■ (3.32) 

1 + ( 1 - c^ ) z^ 

Finally using  (3.32)  and  [  Theorem B,  pg.  124,14]  (asymptotic 

distribution of functions with vanishing first order derivatives) we 

get the asymptotic distribution of SNE as K ->» . 

These formulas should generally give a good estimate of the 

moments of SNR even for the general case when X2 is close to zero and 

K is large. Using the formulas for the expected value of SNR for the 

low rank filter weight estimate formula (3.27) and formula (1.11) 

when the filter weights are based on the inversion of the sample 

covariance matrix, we can roughly determine the number of samples 

needed to attain equivalent performance ( in respect to the expected 

values of SNR for both methods ) using the conventional filter weight 

estimate (1.09) compared against the improved rank-1 filter weight 

estimate (1.15) . Denoting the number of samples used to estimate the 

noise covariance in the low rank method as Kj and the sample size for 

the conventional detector as KQ, to attain equivalent performance , Kp 

must be 

Kp = KT [ ( p - 1 )/( 1 - ci^ ) ] - 1 (3.33) 
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CHAPTER FOUR 

III) Experimental Resalts 

Computer simulation results for the distribution of SNR are 

presented for three cases; (1) rank-l interference plus white noise, 

(2) a highly correlated I'st order autoregressive noise component plus 

white noise, and (3) when the interference data being used to estimate 

the interference covariance matrix is contaminated by signal. Further, 

for the rank-l interference plus white noise case, we show the 

improvement of the low rank filter weight estimates over the 

conventional estimate (based on the inversion of the estimated sample 

covariance matrix). 

The notation is the same as in sections I and II. The rank-l 

interference plus white noise gaussian noise vector is generated as 

follows : 

\    = }      w^. ?. (4.00) 

where the scale factors w^.- are zero-mean and independent gaussian 

random variables with variance 

Var[ wjj.1 ] = 1 + a^ (4.01) 

and for j=2,3...p 

Var[ wjj.j ] = a^ (4.02) 

The vectors r. (j=l,2...p) are the normalized eigenvectors of the 

matrix R. The elements of R are 

r.j=al^"j|    for  i=l,2...p (4.03) 

j=l,2...p 
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The matrix R corresponds to the covariance of a first order AR process 

with correlation a, therefore the noise vector n^^ corresponds roughly 

to a snapshot of a I'st order autoregressive noise component plus white 

noise if a >>yj (for j=2,3...p) where the yz are the eigenvalues of R. 

The interference-to-noise ratio is defined as 

INR = 101og;^o( 1 / Po^ ) ' (4.02) 

where p is the covariance matrix order. 

The signal vector we shall use is 

sjj. = cos( 23t f (k-1) )   for k=l,2...p (4.03) 

where f is the frequency. 

For our computer simulation, we set a=,9999, p=20, K=25 

(covariance sample size). Three hundred independent trails were 

performed with INR being varied from lOdB to 15dB and the signal 

frequency varied from .03 to .06 . The noise covariance matrix was 

estimated using the maximum-liklihood estimate formula (1.08). 

Scattergrams (see Fig. 2) show that the SNR approximation is accurate . 

Next, histograms with confidence bounds were generated using the 

simulated data. The confidence bounds were calculated by noting that 

the frequency count in a particular histogram bin follows the binomial 

distribution and then using the DeMoirve-Laplace theorem [8] to 

estimate the standard deviation of the frequency count, 

ajj. = \/( n fj.^. ( 1 - f^^ ) ) (4.04) 

where n is the number of trials and f^^ is the expected frequency for 

the k'th histogram bin obtained using the derived SNR density (3.25) . 

Figure 3 shows that the experimental data fits the SNR density (3.25) 

well. 

Next we show that the probability density formula (3.25) for SNR 
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can be also used to predict the performance of the detector when the 

interference is a mixture of highly correlated I'st order AR process 

noise and white noise. The noise vector n. is generated using (4.00) 

and the same parameters as before except 

Var[ wjj.j ] = Yj + <J^  for j=l,2...p (4.05) 

where Y; (j=l,2...p), are the eigenvalues of matrix R, and the value of 

the signal frequency f is .16 . In evaluating the SNR density formula 

(3.25) , we assume that ^2 is proportional to a , that is. 

2 
a 

h    "    2 ^^'^^'^ 

or equivalently that Y^^O for k=2,3...p . Histograms ( see Fig. 4 ) 

show that we get relatively good agreement with the predicted 

distribution . 

When the noise data is contaminated by the signal that is being 

received, that is, 

°^k = ^k ^ ^O* 

where SQ is a scalar, we can still attain reasonable performance using 

the rank-1 filter weight estimate . This is shown through experimental 

results. The signal-to-white-noise ratio (SWNR) of the contaminating 

signal is defined as 

SWNR = lOlog^o^ ^0^ '' ^°^  ^ (4.07) 

Using the same methodology and parameters as in the first set of 

experiments (a=.9999, INR=10dB, ^=25) and with signal frequency 

f=.047, we generate the signal contaminated noise data using (4.06) and 

SWNR=-15dB . The histogram of the experimental data (see Fig. 5) and 
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statistics indicate even with signal contamination, we can still attain 

relatively high values of SNR. 

By evaluating the formula for the expected value of SNR (1.11) and 

the density formulas derived by Reed, Mallet, Brennan [1,formula 17] 

for the conventional adaptive detector based on the inverse of the 

sample covariance matrix and evaluating the density of our improved 

detector using the SNR density formula (3.25) , it can be seen that for 

even small sample sizes (see Fig. 6,7), the filter weights based on the 

principal eigenvector yield superior results in this example. 

Below, the approximate formulas that were derived in Chapter 3 for 

the expected value of SNR (3.27) and variance (3.28) are evaluated and 

compared against the computer simulation results obtained earlier. It 

can be seen from the below results, that formulas (3.27) and (3.28) are 

accurate. 

a) mean and standard deviation of SNR calculated using the approximate 

formulas (3.27) and (3.28) when INR=10 dB, a=.9999, K=25 

f=.03 

f=.04 

f=.05 

f=.06 

E[SNR]=.962 , Dev[SNR]=.0542 (4.08) 

E[SNR]=.965 , Dev[SNR]=.0500 (4.09) 

E[SNR]=.960 , Dev[SNR]=.0566 (4.10) 

E[SNR]=.963 , Dev[SNR]=.0524 (4.11) 

b) mean and  standard deviation of  SNR obtained through computer 

simulation based  on  300  independent  trials  and using  the  same 

parameters as before 

f=.03 : E[SNR]=.965  , Dev[SNR]=.0442 (4.12) 

f=.04 : E[SNR]=.965  , Dev[SNR]=.0419 (4.13) 
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f=.05   :   E[SNR]=.967     ,   Dev[SNR]=.0438 (4.14) 

f=.06   :   E[SNR]=.967     ,   Dev[SNR]=.0398 (4.15) 
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CHAPTER FIVE 

Conclusion 

The formulas we have derived are useful over a reasonable range 

of interference-to-noise ratios and signal types. For near rank-1 

noise, the null steerer generally provides good performance over 

conventional detectors based on sample covariance matrix inversion. 

Further, these results should give insight into determining optimal 

adaptive detectors and their performance for higher rank near singular 

noise. 

The reader may question why we did not use the known asymptotic 

distribution of the principal eigenvector of a Wishart matrix [13] in 

deriving the SNR probability density. Through experimentation , we have 

determined that the power method approximation for the principal 

eigenvector of the estimated sample covariance matrix is much more 

accurate for small sample sizes than the extreme asymptotic 

distribution. 
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APPENDIX A 

Determining the Form and Distribntion of x. 

We will compute the expansion scale factors which are defined in 

formula (2.05) and show that the x^ are asymptoticaly gaussian. Recall 

that the eigen-decomposition of N is 

N = V A V^ ,. (al.O) 

Neglecting its length , the principal eigenvector of N is approximated 

by Nv^ and it can be represented using the matrix V of column vectors 

which are the eigenvectors of the true covariance matrix N as follows: 

N V]^ = V X (al.l) 

in which x is the pxl column vector of the scale factors. 

X = [ xj^ X2 . . . . Xp ]^ (al.2) 

Then 

X = V^ N vi (al.3) 

Next, Vi can be rewritten as 

vi = V b (al,4) 

where b=[100...0]^ . Note that the dimensions of b are pxl 

. Now substitute formula (al.4) into (al.3) 

:^ = V^ N V b (al.5) 

To obtain the distribution of x we need to first find the distribution 

of V NV . Use a theorem of Wishart matrices (from [7]). recalling that 

N is Wishart [13] , For additional discussion and use of the Wishart 

distribution of estimated covariance matrices see (Anderson [7]), 

(Goodman [16]). (Reed, Mallet, Brennan [1]) and (Capon and Goodman 

[17]). 

Theorem B:    If N ~ Wp( N.K ) . then v"^ N V ~ W ( v'^ N V . K)  . 

In this notation, y~W (X.K) means that the pxp matrix Y is Wishart 
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distributed with expected value X and K degrees of freedom. 

Therefore 

V'^ N V ~ Wp( V^ N V . K) (al.6) 

The distribution parameters of (al.6) can be simplified by substituting 

the eigen-decomposition of N in place of N. 

Then • 

V^ N V ~ Wp( A . K ) (al.7) 

where A is the diagonal matrix of eigenvalues of N. We now have the 

distribution of V NV . Anderson [7] has shown that the sample 

covariance matrix is asymptotically gaussian distributed as the sample 

size increases. The equivalent can be stated for Wishart matrices as K 

->°> . The theorem from Anderson [7] is re-stated below for the case of 

Wishart matrices. 

Theorem C: If ^ is Wishart W ( I , K ) , then the asymptotic 

distribution of 

1 
X =   I  I! -   I  I (al.8) iri 

is normal with mean 0 and covariances 

^f ^ij ^kl ^  = <^ik '^jl  + <^il -^jk (al-5) 

where x^, is the i.j'th element of matrix X (al.8) and a^-    is the 

i.j 'th covariance from 2. • 

Let 

I = V"^ N V (a2.0) 

then 

X = i b (a2.1) 
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It can now be seen that x is simply the first column of >. By- 

application of theorem C directly to formula (al.5) and using formula 

(al.9), it can be easily shown that x is asymtotically multivariate 

gaussian with mean 

E[ x^ ] = i^ =  [ 1 0 0 . . . 0 ]^ (a2.2) 

and covariance matrix 

(a2.3) 

E[ (x-i)(x-i)^] 

2/K 
0 

0 

0 

0    0 
X. /K   0 
6    X^IY. 

0 
0 

x^l^ 

X^/K 

of dimension pxp and where K is the number of vectors used in 

estimating the covariance matrix N. Note that the elements of x are 

asymptoticaly uncorrelated, therefore independent. Further , for 

reasonable sample size we can consider the distribution of x to be 

approximatly multivariate gaussian with the above parameters. 

APPENDIX B 

Means and Variances of P.. and the Approximation Errors 

In appendix B we will first compute the error of approximating the 

products d-dj, ( formula (2.16) ) by the corresponding asymptotic 

results Djj^ ( formulas (2.17) (2.18) (2.19) ) and then the respective 

means and variances of D-^ and the approximation errors for the near 

rank 1 covariance matrix and large sample case. The approximation error 

A.j^ is given by 
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^k = °jk - ^j <^k (^i-o) 

Through substitution of formulas (2.16),  (2.17).  (2.18), and (2.19) 

into formula (bl.O) we get (it is noted that A,j,=0 ):        '•   .. 

For j=l ,k=2,3...p the error is 

-'^1 'k y ^k y 
^Ik =  2 3  (^1-1) 

^1 ^1 

and finally for j=2,3,...p 

k=2,3,,..p 

2 
c. X, y        c, X. y        c, x. x, 

A., = —^ 4^ S^        (bl.3) 
^1 ^1 ^1 

2 
2  c, X. X  y        '■■   ■^^. 

3 4 
^1 'l 

We will now calculate the mean and variance of the approximations D-. 

(formulas (2.17) (2.18) (2.19)  ) and the approximation error terms A., 

(formulas (bl.l) (bl.2) (bl.3)  ) . Since D-j^'s and A.^'s are sums of 
> 

ratios of uncorrelated random variables,  we need the use  of the 

following formulas for eatimating the mean and variance of ratios of 

two random variables. Given uncorrelated random variables u and x, then 
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(bl.4) 2 

Ef-^1==||4   and   Varf-^]^:—J^ .(bl.5) I u  J  E[u] L u  J   g|^^ 

These approximations (bl.4) and (bl.5) are generaly accurate when 

(bl.6) 

E[ u ] # 0  ,  E[ u ] >> a (bl.7) 
a 

a a 
and — << — (bl.8) 

^E[ u ] ^   E[  X  ] 
2      2 where a       and a       are the variances of x and u respectively. Note that 

although the moments of these ratios might not exist in the strict 

theoritical sense, these estimates  (formulas  (bl.4) and ( bl.5)  ) 

should give an good indication where the bulk of the probability 

density mass of the ratio x/u lies (using the Tchebycheff inequality 

[8]). Further, note that the above conditions  (bl.6),  (bl.7),  and 

(bl.8) are essentially satisfied in the case that we are considering, 

near   rank   1    covariance    and    large    sample    size 

Note that throughout the mean and variance results we shall use 

r = '5    c^ (bi.9) 
i-        n 

n=2 

We now calculate the expected value and variance of the approximations 

Djj^ ( formulas (2.17), (2.18) and (2.19) ) and the error terms A-j^ 

(formulas (bl.l) and (bl.3) ) using formulas (bl.4) and (bl.5) . 
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1)  D 11 

(b2.0) 

E[   D^^]    = 
x^r 

K  [  1 + 2/K ] 

2 X ̂ r" 
(b2.1) 

Var[   p,     ]    = P: ̂
 K^   [  1  + 2/K ? 

2) D^^  :     k=2,3...p 

E[ D^^] s    0 

X^c I    } 
Var[ D,, ] 

Ik 
n=2 

(b2.2) 

(b2.3) 

3) Djj   :     j=2,3...p 

E[ D..]     =    cT 
JJ J 

2    2 
4 X,  c,   c. 

VarCD..]     =    ^    ^    i 
JJ V 

(b2.4) 

(b2.5) 

4)  D.^^  :       jjtfc for j=2,3...p 

k=2,3...p 

E[ D.,]    =    c.   c. 
J^ J     ^ 

^       2   .    2 ^    2 w X-  c.   I  c.   + c,   J 
Var[ D.J     =   -^-i J ^ 

Jk 

(b2.6) 

(b2.7) 
K 

^jk 
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E[A^^]  = 
K [ 1 + 2/K ] 

(b2.8) 

The variance of the terms of AI-L are 

Var «^i \ y 
,22,2 
^2 °1 ^ °k ^ ^ ^ 

K^ [ 1 + 2/K ]^ 
(b2.9) 

Var \ y 
3 

'2 X" ( 12 c? r + 3 r^ ) 

K^ [ 1 + 6/K ]^ 
(b3.0) 

2) Ajj :  j=2,3...p 

2        2 2 
X., c- - 2 X, c,    X» ( 2 c, + r ) 

K [ 1 + 2/K ]      K + 12 K [ 1 + 1/K ] 
(b3.1) 

The variance of the terms A., are 

Var 

2  2 1   .2 4 

K^ [ 1 + 2/K ]^ 
(b3.2) 

Var 
2  c . X . y 
 J  J 

2  2    2 
4 X, c": ( c-r + r ) 

K^ [, 1 + 2/K ] 
(b3.3) 
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Var lil 4 X^   (   12  c^  + 3   r ) 

K^   [  1 +  6/K ]^ 
(b3.4) 

Var 

2     2 _[_(24cj 

n 
^ * Y)   (72c^ + 9r)   -  (2c^ + D^  ] 
 J J i 

K^       1  +   (12/K)   (  1  + 1/K  ) 
<b3.5) 

3)  A.j^   :     j3tk    for j=2,3...p 

k=2,3..,p 

E[  A., ]     = 
-2  X-   c.   c, 

 ^-^^^    ^    - 
K  [  1 + 2/K ] K    + 12 K  [  1 + 1/K ] 

2  X-   c.   c, 
2     J     k (b3.6) 

The  variance  of  the   terms  of A.>.  are 
J ■»■ 

Var 

2 
c,    X.    X 

^^2  *=! 

K^   [   1  +  2/K  ]^ 
(b3.7) 

Var 
c. 

J ^k y 

2 
'■    ^1 

, 

X- c.  ( c, + r ) 

K^   [   1   +  2/K  ]^ 
(b3.8) 

Var 

2     2 2 X- c, t c. + r ) 
2    k J  

K^   [   1  + 2/K  ]^ 
(3.9) 
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Var 
2  X.   X    y 4 x: [ 2 ( c^ + c^ ) + r 

(b4.0) 
K^   [  1  + 6/K ] 

Var 
X.   X,    y 

_J L 
2   , 

I Cit cT + ( ct + c,'^ ) r   + 
2     2 

JL_i. n 
2 

^] 
K^       1  +   (12/K)   [  1  + 1/K ] 

(b4.1) 
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Fig. 2)   SCATTERGRAMS  OF  TRUE  SNR  FORMULA (1.10)  VS. 
APPROXIMATE  SNR  FORMULA (1.23)  BASED ON  300 
INnEPENPENT  TRIALS.  THE  EXPERIMENTAL  PAR,V.lETi:?.S 
ARE: 

a=.9999 ,  p=20  ( COVARIANCE MATRIX  ORDER) 
K=25  ( COVARIANCE SAMPLE  SIZE ) 
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1-ig. 3)  HISTOGR/\MS  01-  SNR  FORMULA (1.10)  BASED ON  300 
INDEPENDENT  TRIALS .  BOUNDS  ARE  PLACED ON  THH EXPhKIMENTALY 
OBTAINED  BIN  FREQUENCIES  ,  .^SUMING  THAT SNR HAS     T!!E . 

DERIVED  PROBABILITY  DENSITY (3.25)  AND THEN CALCUbXTING 
THE EXPECTED VALUE AND ESTIMATED STANDARD DEVIATION OF THE 
BIN FREQUENCY.  HISTOGRAMS ARE GENERATED USING  30  EQUALLY 
SPACED BINS.  THE EXPERIMENTAL PARAMETERS ARE: 
a=,9999 ,  p=20  ( COVARIANCE MATRIX ORDER ) 
K=25  ( COVARIANCE SAMPLE SIZE ) 
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■ig. 4)   llISTOGRAiMS  OF  SNR  FORMULA (1.10)  B,VSEn ON  300 
[NDHPIiNDHNT  TRIALS  FOR THE  C.^SE WHi-.N THE  NOISE 
CONSISTS  OF  A  I'st  ORDER  AUTOREGRESSIVE  COMPONENT 
PLUS  A WHITE NOISE  COMPONENT.  BOUNDS  ARE  PLXCED -ON 
nir.  F.Xl'RRIMENTALY  OBTAINED  BIN  FREQUENCIES,  ASSUMING 
lliAl  SNK HAS  THE  DERIVED  SNR  DENSITi' i5.25)  AND 
THEN CALCULATING  THE  EXPECTED  VALUE AND ESTIMATED . 
STANDARD  DEVIATION  OF THE  BIN  FREQUENCY.  HISTOGR.VMS 
ARE GENERATED  USING  50  EQUALLY  SPACED  BINS.  TOE 
EXPERIMENTAL  PAR.VMETERS  ARE: 

a=.9999 ,  p=20  ( COVARIANCE  MATRIX ORDER ) 
K=25  ( COVARIANCE  SAMPLE  SIZE ) 
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Fig. 5J  HISTOGRAiMS  01-  SNR  FORMULA (1.10)  BASED ON  300., 
INDHPliNDENT TRIALS  FOR  'nin  CASE  1\11E.\' THE  NOISE  BEING 
USED  TO  ESTIMXTF:  THf-.  COVARIANCE  MATRIX  IS  CONTAMINATED 
BY  SIGNAL.  BOUNDS ARE  PLACED ON THE  EXPERIMENTALY 
OBTAINED  BIN  FREQUENCIES,  ASSUMING  THAT SNR HAS  THE 
DERI\I.D  DENSriT (3.25)  AND THEN  CALCULATING TOE  EXPECTED 
VA1,UE AND  ESTIMATI;D  STANDARD  DEVIATION  OF THE  BIN 
FREQUENCY.  HISTOGRAM  IS  GENERATED  USING  30  EQUALLY  SPACED 
BINS.  THE  EXPERIMENTAL PAILVMETERS  ARE: 

a=.999y , j=20  ( COVARIANCE  MATRIX  ORDER ) 
K=25  ( COVARIANCE SAMPLE  SIZE ) 
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